

TBU Stubenvoll GmbH

Experience and Competence in Environmental Technologies

TBU Services

Engineering, consulting, supervision and start-up for waste and biomass incineration plants

Basic engineering, detail engineering, delivery of technology components and supervision of production, assembly and start-up for fluidized bed incinerators for fuels such as waste fuels, biomass and sewage sludge and dry, semi-dry and wet flue gas cleaning plants

Experiences with Different Technologies in Different Countries

Our engineering for your success is based on many years of experience in the field of advanced environmental plants all over the world. We have successfully engineered projects in:

Dürnrohr(Austria)

Kaucuk Kralupy (Czech Republic)

Marsa (Malta)

- Austria
- Australia
- China
- Croatia
- Czech Republic
- France
- Germany
- Great Britain
- Greece
- Hungary

Neubrücke (Germany)

Frankfurt (Germany)

- Italy
- Korea
- Malta
- Netherlands
- Russia
- Switzerland
- Slovakia
- South Africa
- Taiwan

Zürich / Aubrugg (Switzerland)

Lenzing (Austria)

Moscow (Russia)

References - Basic- and Detail Engineering for

Waste Incineration Plants since 1995

For waste fuels such: sewage sludge, non-hazardous and hazardous waste With capacity up to 320.000 t /line/year

References - Fluidised Bed Combustion

References - Gas Cleaning Systems

Fluidised Bed Incineration Plant Höchst for RDF

(Germany 2011-2013)

Project Description:

- ✓ Fluidised bed incinerator for RDF
- Production of electrical energy and steam

Capacity:

✓ 3 x 90 MW fuel heat capacity

Plant Concept:

- Fuel feeding
- Fluidised bed combustion with SCNR-system
- Steam boiler
- Baghouse filter, semi-dry adsorption

TBU: basic engineering for staged combustion and boiler reconstruction (retrofit of EBARA-process), combustion control system

Redesign of Fluidised Bed Incineration Concept WSO4 / Fernwärme Wien GmbH (Austria 2012-2013)

Project objectives:

- Risk minimizing for boiler fouling and corrosion
- Increase of range of fuel
- Improvement of incineration stability

TBU: adaptation of combustion control system, design engineering for air- and recirculation air system

Biomass Power Plant Bern (Switzerland 2009 - 2013)

Project Description:

- Fluidised bed incinerator for biomass
- Production of electrical energy and steam for district heating

Capacity:

✓ 27 MW fuel heat capacity

Plant Concept:

- Storage of biomass
- Boiler with integrated fluidised bed incineration
- Dry flue gas cleaning plant

TBU Stubenvoll GmbH

TBU: basic engineering, know-how provider of combustion and start-up assistance

Capacity Increase of Fluidised Bed Incinerator Villas Energie GmbH (Austria 2011-2012)

Stationary Fluidised Bed

Combustion for:

- Production wastes
- ✓ Sewage sludge
- ✓ Treated waste fuels

The **produced energy** is used to:

 heat supply of production of Villas Austria GmbH

Installation of a wet flue gas cleaning plant

Capacity:

Capacity increase from
 2,8 MW to 4,3 MW

TBU: concept engineering, approval procedure, procedural engineering, processing and start-up for combustion and flue gas cleaning

Fluidised Bed Incinerator ABRG Arnoldstein (Austria 2008-2011)

Project Description:

- Fluidised bed incinerator for solid, fluid and pasty hazardous and nonhazardous waste fuel
- Production of electrical energy and steam for steam network on-site

Capacity:

- ✓ 11 MW fuel heat capacity
- ✓ Total capacity: 42.000 tons per year

Plant Concept:

- ✓ Fuel feeding
- Fluidised bed combustion with SCNR-system
- Heat recovery steam boiler
- Baghouse filter, two stage scrubber, dry adsorption

TBU: approval procedure, basic engineering, detail engineering, supervision of production and assembly, as well as start-up of the whole plant with own know-how for combustion and flue gas cleaning

Biomass Power Plant Zurich / Aubrugg (Switzerland 2009 - 2010)

Project Description:

- Fluidised bed incinerator for biomass
- Production of electrical energy and steam for district heating

Capacity:

- ✓ 44 MW fuel heat capacity
- Emissions according to Swiss law

Plant Concept:

- ✓ Storage of biomass
- Boiler with integrated fluidised bed incineration
- ✓ Dry flue gas cleaning plant

TBU: basic engineering, know-how provider of combustion and start-up assistance

Waste Incineration Plant Dürnrohr (Austria 1994-2009)

Project Description:

- Grate combustion for domestic waste and sewage sludge in 3 lines
- Production of electrical energy and steam for district heating in power plant Dürnrohr

Capacity:

- ✓ 2 x 60 MW line 1 and 2
- ✓ 90 MW line 3
- ✓ Total capacity 525.000 tons per year

Plant Concept:

- Delivery, unloading and storage of waste fuels
- Boiler plant with integrated grate combustion
- Dry, wet and catalytic flue gas cleaning plant for
 3 combustion lines
- Treatment plant for fast residues
- Waste water treatment plant

TBU: concept engineering, tender engineering and supervision of basic engineering, detail engineering and start-up of line 1, 2 (1994-2003) and line 3 (2005-2009)

ŤP¹Ť

Water Steam Cycle of Waste Incinerator and Power Plant Dürnrohr

14

Waste Logistic System of Waste Incinerator Dürnrohr

- Container system for loading of waste:
- ✓ directly on truck
- with compactor at local tranship station
- ✓ with loader from top

- fully automatic unloading system
- ✓ unloading with trucks
- => most possible flexibility

Project: Use of Alternative Fuels in a Large-scale Power Plant

pre-treatment plant

Waste Fluidised Bed Incineration Plant McSTEP (Switzerland/Monthey 2007-2010)

Project Description:

- Fluidised bed incinerator for sewage sludge and solvents
- Production of process steam for an industrial plant

Capacity:

✓ 7 MW fuel heat capacity

Plant Concept:

- Intermediate storage and dosing of sewage sludge
- Stationary fluidised bed with SNCR-plant
- Heat recovery boiler
- Semi dry and wet flue gas cleaning plant

TBU: basic engineering, detail engineering, delivery of special parts and supervision of production, assembly and start-up

Pilot Plant for Straw Pyrolysis Dürnrohr (Austria 2006 - 2008)

Project Description:

- Pyrolysis of straw
- Combustion of pyrolysis gas
- Combustion of straw and pyrolysis coke in
 - a fluidised bed combustion
- Project objective: Confirmation of design data and technology demonstration for use of straw in a large power plant

Capacity:

- ✓ 5 MW fuel heat capacity,
- Emission limits to Austrian law

Plant Concept:

- ✓ Indirect heated rotary kiln
- ✓ Fluidised bed incinerator
- ✓ Spray cooler
- ✓ Spray absorber
- Baghouse filter

TBU: approval procedure, basic engineering, detail engineering, supervision of production and commissioning , start-up

Revamp of Fluidised Bed Incinerator WSO1 for Fernwärme Wien GmbH (Austria 2008-2009)

Project Description:

✓ Revamp of fluidised bed incinerator WSO1 for sewage sludge and solid fuels

Capacity:

✓ 16 MW fuel heat capacity

Revamp concept and project objectives:

- Modification of adiabatic combustion chamber \checkmark geometry
- Additional high-pressure steam air pre-heater \checkmark
- Combustion control concept
- → Increased sewage sludge throughput
- → Reduction of need for high calorific secondary fuel

TBU: basic engineering, detail engineering, supervision of start-up after revamp

Biomass Power Plant Heiligenkreuz (Austria2008-2009)

Project Description:

- Fluidised bed incinerator for biomass
- Production of electrical energy and process steam

Capacity:

- ✓ 48 MW fuel heat capacity
- Emissions according to 17 BImSchV

Operating company:	Bewag und Begas
Combustion:	Babcock Wilcox
Boiler:	Marcegaglia

TBU: simulation of combustion, improvement actions for combustion for prevention of depositions at the same time with capacity increase of 10 %

Waste Incineration Plant Marsa (Malta 2007-2009)

Project Description:

- ✓ Upgrade of an existing incinerator for abattoir
- ✓ Hospital waste, special hazardous and nonhazardous waste used as fuel

Capacity:

- 5 MW fuel heat capacity \checkmark
- \checkmark Emissions according to EU-guideline

Plant Concept:

- Rotary kiln, combustion chamber and afterburning chamber \checkmark
- Dry adsorption with baghouse filter \checkmark

TBU: basic engineering, supervision of detail engineering and start-up, supervision of performance tests

IWB Biomass Power Plant Basel (Switzerland 2006 - 2008)

Project Description:

- Fluidised bed incinerator for biomass
- Production of electrical energy and steam for district heating

Capacity:

- ✓ 30 MW fuel heat capacity
- Emissions according to Swiss law

Plant Concept:

- ✓ Storage of biomass
- Boiler with integrated fluidised bed incineration
- ✓ Dry flue gas cleaning plant
- Existing water steam cycle with turbine

TBU: basic engineering, detail engineering, supervision of production and assembly of combustion as well as start-up of the whole plant

Fluidised Bed Incinerator Niklasdorf (Austria 2006-2008)

Project Description:

- Fluidised bed combustion for waste fuels and sewage sludge
- Production of electrical energy and process steam

Capacity:

✓ 32 MW fuel heat capacity

- Operating company: Enages
- ✓ General Contractor:
- tor: Siemens AG
- Combustion and Boiler: AE

TBU: simulation of combustion, improvement actions for combustion for prevention of depositions

1st Fluidised Bed Incineration Plant VILLAS Austria GmbH (Austria 2005-2006)

Project Description:

- Fluidised bed incinerator for industrial waste and sewage sludge
- Energy transfer to thermal oil system

Capacity:

- ✓ 2,8 MW fuel heat capacity
- Emission limits according to Austrian law

Plant Concept:

- Fluidised bed combustion with boiler and flue gas air pre-heater unit
- Baghouse filter and existing scrubber with NaOHdosing station

TBU: approval procedure, basic engineering, detail engineering, supervision of production and commissioning, start-up

Waste Wood Fluidised Bed Incineration Plant ALTENSTADT-SCHONGAU (Germany 2004-2005)

Project Description:

- Upgrade of the existing fluidised bed incinerator
- Production of electrical energy and steam for district heating from biomass

Capacity:

- ✓ 40,4 MW fuel heat capacity
- Emissions according to 17 BimschV

Plant Concept:

- Storage of waste wood
- ✓ Boiler with integrated fluidised bed combustion
- Dry flue gas cleaning plant
- Water steam cycle with turbine

TBU: basic and detail engineering, supervision of production and assembly of combustion as well as the start-up of the whole plant

TBU Stubenvoll GmbH

Waste Incineration Plant MSZ 3 Moscow (Russia 2003-2008)

Project Description:

- Grate combustion for domestic waste
- Production of electrical energy and steam for district heating

Capacity:

- ✓ 90 MW fuel heat capacity
- ✓ Total capacity 360.000 tons per year

Plant Concept:

- Delivery, unloading and storage of waste
- Grate integrated into the boiler
- Semi-dry and catalytic flue gas cleaning plant
- ✓ Water-steam cycle with counter pressure turbine

TBU: concept engineering, tender engineering, supervision of basic engineering, detail engineering and start-up

Waste Wood Fluidised Bed Incineration Plant OIE Neubrücke (Germany 2002-2003)

Project Description:

- Fluidised bed incinerator for biomass and waste wood
- Production of electrical energy and steam for district heating

Capacity:

- ✓ 30 MW fuel heat capacity
- ✓ Total capacity 60.000 tons per year

Plant Concept:

- Storage of waste wood
- Boiler with integrated fluidised bed combustion
- Selective non-catalytic NOx-reduction
- Semi-dry flue gas cleaning plant
- Water steam cycle with turbine

TBU: basic engineering, detail engineering, supervision of production and assembly of combustion and flue gas cleaning and start-up of the whole plant

BU Stubenvoll GmbH

Hazardous Waste Incineration Plant Rotary Kiln ABRG ARNOLDSTEIN (Austria 2002-2005)

Project Description:

- ✓ Combustion of hazardous waste
- ✓ Recycling of heavy metals
- ✓ Steam production

Capacity:

- ✓ 8 MW fuel heat capacity
- Emission according to Austrian law
- ✓ Total capacity 20.000 tons per year0

Plant Concept:

- Rotary kiln with afterburning chamber
- ✓ Non-catalytic NOx-reduction
- ✓ Waste heat boiler
- Baghouse filter
- Two stage scrubber
- Dry adsorption system

TBU: approval procedure, basic engineering, detail engineering supervision of production and assembly, start-up

Circulating Fluidised Bed Incineration Lenzing (Austria 1993-2002)

Project Description:

- Fluidised bed incinerator for RDF and sewage sludge
- Production of electrical energy and process steam

Capacity:

- ✓ 110 MW fuel heat capacity
- ✓ Total capacity: 250.000 tons per year

Plant Concept:

- Mechanical treatment of RDF
- Circulating fluidised bed incinerator
- Waste heat boiler
- Dry, wet and catalytic flue gas cleaning plant
- Waste water treatment plant

TBU: concept engineering, tender engineering, supervision of basic engineering, detail engineering and start-up Detail engineering of the fluidised bed bottom, combustion control system and scrubber

BU Stubenvoll GmbH

Waste Fluidised Bed Incineration Plant ABRG Arnoldstein (Austria 2000-2001)

Project Description:

- Fluidised bed incinerator for hazardous and nonhazardous waste
- Upgrade of incinerator, boiler and flue gas cleaning plant

Capacity:

- ✓ 6 MW fuel heat capacity
- ✓ Total capacity: 30.000 tons per year

Plant Concept:

- Stationary fluidised bed reactor with waste heat boiler
- Electrostatic precipitator, two stage scrubber, dry adsorption

system with coke powder and lime and selective catalytic reduction of NOx

✓ Waste water treatment plant

TBU: approval procedure, basic engineering, detail engineering, supervision of production and assembly, start-up

Fluidised Bed Incineration Plant HAMBURGER PITTEN (Austria 2001)

Project Description:

- ✓ Upgrade of existing fluidised bed boiler for combustion of coal and sewage sludge
- New design for combustion control system \checkmark

Capacity:

Baghouse filter \checkmark

 \checkmark

Boiler plant with water steam cycle \checkmark

TBU: engineering, supervision of assembly and start-up

Dampfabgabe

(HD-Dampf)

Waste Fluidised Bed Boiler 1K7 Lenzing AG (Austria 2000)

Project Description:

- Upgrade of existent fluidised bed boiler for combustion of bark, coal, internal waste fuels and sewage sludge
- New concept for combustion control system

Capacity:

✓ 110 MW fuel heat capacity

Frischdampf

Speisewasser

Plant Concept:

- ✓ Fuel transport
- Boiler with integrated combustion
- ✓ Baghouse filter

TBU: process engineering and start-up

TBU Stubenvoll GmbH

Waste Incineration Plant Wels (Austria 1999-2000)

Project Description:

- ✓ Grate combustion for municipal and industrial waste
- Upgrade of the waste water treatment plant and the SO2 scrubber
- Production of electrical energy and steam for district heating

Capacity:

- ✓ 28 MW fuel heat capacity
- ✓ Total capacity 300.000 tons per year

Plant Concept:

- Grate combustion with waste heat boiler
- Electrostatic precipitator, two stage wet flue gas cleaning plant, activated coke filter, catalytic flue gas cleaning
- Wet-chemical ash treatment: and slag treatment
- Multistage waste water treatment plant

TBU: design, supervision and start-up of the upgraded scrubber control system and waste water treatment plant

Waste Incineration Plant Yong in Sooji (South Korea 1999)

Project Description

Upgrade of the flue gas cleaning plant

TBU: basic engineering, supervision of detail engineering

Industrial Waste Incineration Plant Kaucuk Kralupy (CS) (Czech Republic 1995)

Project Description:

- Upgrade of the existing incinerator for industrial waste
- Construction of a new combustion chamber for pyrolysis of polluted production components

Capacity:

- ✓ 15 MW fuel heat capacity
- ✓ Emissions according to 17 BimschV

Plant Concept:

- Rotary kiln, combustion chamber and afterburning chamber
- Semi dry and wet flue gas cleaning plant
- Waste water treatment plant
- Cementation plant for residues of flue gas cleaning plant

TBU: Cooperation at approval procedure, basic engineering and supervision of detail engineering, production, assembly and start-up

Stationary Fluidised Bed (bubbling bed) with Staged Combustion

BU Stubenvoll GmbH

Optimised fuel- and bed material system for biomass and waste fuels

- Dosing screw for fuels with equalisation
- ✓ Pneumatical fuel feeding
- Open nozzle floor
- Screening and precipitation of big ash parts by the bed ash system

Optimised air and flue gas system

- Controlled composition for fluidising gas consisting of air and recirculation gas
- Two different levels for secondary air
- Controlled profile of combustion chamber temperature

Dosing System with Equalizer and Injector

Fuel dosing system

- Dosing system for fuels up to 300 mm feed size
- Precise and constant dosage
- Pneumatic fuel feeding onto the bed surface
- Burn-back protection: temperature monitoring, sub-pressure, burnback double valve (open under normal operation)
- Additional burn-back protection by water sprinkling system

Open Nozzle Floor and Pendular Discharge

Open nozzle floor

- Open nozzle floor suitable for discharge of big particles up to 300 mm
- ✓ Low pressure drop
- ✓ Optimised equalisation of primary air

Pendular discharge

- Mechanical bed material discharge
- Continuously recirculation of bed material to combustion chamber
- Pneumatical screening

Stationary Fluidised Bed Combustion for sewage sludge without recirculation gas - optimised in view of low additional firing

U Stubenvoll GmbH

Advantages - Stationary Fluidised Bed with Staged Combustion

Process Advantages

 \checkmark Small amount of unburned components in residues and

flue gas

- ✓ Low NOx production
- ✓ Wide range for calorific value and water content
- Wide range for superheating power due to low combustion temperature and high recirculation gas flow

Commercial advantages

- ✓ Reduced space requirement
- Reduced cost for boiler + combustion chamber
- \checkmark Low fouling and corrosion risks
- ✓ High availability
- ✓ High electrical efficiency

Dry and Semy-dry System

This system is used for waste and hazardous waste incinerators to remove following flue gas components:

- 🗸 Dust
- 🖌 HCI, HF, SO2
- ✓ Mercury
- ✓ Dioxins und Furans

3U Stubenvoll GmbH

Optimised gas adsorption and dedusting system for low concentrations of gaseous pollutants

- Low pressure drop
- High availability of nozzles
- Simple combined system

Wet Flue Gas Cleaning System

This system is used for waste and hazardous waste incinerators to remove following flue gas components:

- ✓ HCI, HF, SO2
- Mercury
- ✓ Heavy metals

Advantages:

BU Stubenvoll GmbH

- Low pressure drop
- Low water pressure
- Low energy consumption
- ✓ Low emissions of HCl, HF, SO2
- ✓ Optimised residues → gypsum from the SO_2 scrubber
- Neutralisation medium

water

BU

42

Contact:

TBU Stubenvoll GmbH

Pyhrnstrasse 16, 4553 Schlierbach, AUSTRIA Tel: +43 7582 90803 Fax: +43 7582 90803-309 E-Mail: office@tbu.at www.tbu.at

